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1.1 Introduction: 

In this chapter, we consider representing a signal as a weighted 

superposition of orthogonal sinusoids, if such a signal is applied to a linear 

system, then the system output is a weighted superposition of the system response 

to each complex sinusoid.  

Representation of signals as superposition of orthogonal sinusoid not only 

lead to a useful expression for the system output but also provides a very 

insightful characterization of signals and systems. The focus of this chapter is 

representation of signals using orthogonal sinusoids and the properties of such 

representations. Applications of these representations to system and signal 

analysis are emphasized in the communication system theory and circuit analysis. 

The Fourier series is named after Jean Baptiste Joseph Fourier (1768–1830). In 

1822, Fourier’s genius came up with the insight that any practical periodic 

function can be represented as a sum of sinusoids. Such a representation, along 

with the superposition theorem, allows us to find the response of circuits to 

arbitrary periodic inputs using phasor techniques.  

We begin with the trigonometric Fourier series. Later we consider the 

exponential Fourier series. We then apply Fourier series in circuit analysis. 

Finally, practical applications of Fourier series in spectrum analyzers and filters 

are demonstrated. 

 



1.2 TRIGONOMETRIC FOURIER SERIES 

According to the Fourier theorem, any practical periodic function of frequency 

ω0 can be expressed as an infinite sum of sine or cosine functions that are integral 

multiples of ω0. Thus, f(t) can be expressed as 

 

or  

 

where ω0 = 2π/T is called the fundamental frequency in radians per second. The 

sinusoid sin nω0t or cos nω0t is called the nth harmonic of f(t); it is an odd 

harmonic if n is odd and an even harmonic if n is even. The constants an and bn 

are the Fourier coefficients. The coefficient a0 is the dc component or the average 

value of f(t). 

 

A function that can be represented by a Fourier series as in Eq. (16.3) must meet 

certain requirements, because the infinite series in Eq. (16.3) may or may not 

converge. These conditions on f(t) to yield a convergent Fourier series are as 

follows: 

 



These conditions are called Dirichlet conditions. Although they are not necessary 

conditions, they are sufficient conditions for a Fourier series to exist.  

A major task in Fourier series is the determination of the Fourier coefficients 

a0,an, and bn. The process of determining the coefficients is called Fourier 

analysis. The following trigonometric integrals are very helpful in Fourier 

analysis. For any integers m and n, 

 

By using the above identities we can  

 

 



 

An alternative form of Eq. (16.3) is the amplitude-phase form 

 

Where  

 

The plot of the amplitude An of the harmonics versus nω0 is called the amplitude 

spectrum of f(t); the plot of the phase φn versus nω0 is the phase spectrum of f(t). 

Both the amplitude and phase spectra form the frequency spectrum of f(t). 

 

Thus, the Fourier analysis is also a mathematical tool for finding the spectrum of 

a periodic signal. 

One-Sided or Positive-frequency line spectra 

Consider the arbitrary sinusoid  

𝑓(𝑡) = 𝐴𝑐𝑜𝑠(𝑤0𝑡 + 𝜃) 𝑤ℎ𝑒𝑟𝑒 𝑤0 = 2 ∗ 𝜋 ∗ 𝑓0 = 2𝜋/𝑇0 

Which can be written as:  

𝐴𝑐𝑜𝑠(𝑤0𝑡 + 𝜃) = 𝑅𝑒[𝐴𝑒𝑗(𝑤0𝑡+𝜃)] = 𝑅𝑒[𝐴𝑒𝑗(𝑤0𝑡)𝑒𝑗(𝜃) 

This is called a Phasor representation because the term inside the brackets may 

be viewed as a rotating vector in a complex plane whose axes are the real and 

imaginary parts as shown below. 

 

 



 

 

 

 

 

 

The phasor has length A , rotates counterclockwise ate a rate frequency 𝑓0 

revolutions per second, and at time =0 makes an angle θ with respect to the 

positive real axis. At any time t the projection of the phasor on the real axis i.e its 

real part equals the sinusoid f(t).  

  Note carefully that only three parameters are needed to specify a phasor: 

amplitude, relative phase and rotational frequency. To describe the same phasor 

in the frequency domain , we see that it is defined only for particular frequency 

𝑓0. With this frequency we must associate the corresponding amplitude and phase. 

Hence, a suitable frequency domain description would be the line spectrum of 

Figure below, which consists of two plots, amplitude versus frequency and phase 

versus frequency. Four standard conventions used in constructing line spectra 

listed . 

1- In all our spectra drawings the independent variable will be cyclical 

frequency f in hertz, rather than radian frequency w.  

2- Phase angles will be measured with respect to Cosine waves or 

equivalently, with respect to the positive real axis of the phasor diagram.  

sin(wt)=cos(wt-900). 

3- We regard amplitude as always being a positive quantity; when negative 

appear, they must be absorbed in the phase –Acos(wt)=Acos(wt±1800). 

  There is another spectra representation which is only slightly more complicated 

and turns out to be much more useful. It is based on writing a sinusoid as a sum 

of two exponentials,  



𝐴𝑐𝑜𝑠(𝑤0𝑡 + 𝜃) = [
𝐴

2
𝑒𝑗(𝑤0𝑡+𝜃) +

𝐴

2
𝑒−𝑗(𝑤0𝑡+𝜃)]

= [
𝐴

2
𝑒𝑗(𝑤0𝑡)𝑒𝑗(𝜃) +

𝐴

2
𝑒−𝑗(𝑤0𝑡)𝑒−𝑗(𝜃)] 

Which will call the conjugate-phasor representation since the two terms are 

complex conjugates of each other.  

• The spectrum of periodic signals is not continuous but exist only at discrete 

frequencies. 

• The idea of negative frequency is not hard to be understand. Both signals 

𝑒𝑗(𝑤0𝑡), 𝑒−𝑗(𝑤0𝑡) oscillate with the same frequency but they may looked 

upon two phasor rotating in opposite directions and when added yield a 

real time domain function. 

 

 

 

 

 

 

 

 

 

 

 

Example 1.1: Draw the line spectra for the signal consist of sum of sinusoids, 

such as f(t)= 2+6cos(2π10t+300)+ 3sin(2π30t+300)- 4cos(2π35t). 

 Solution : 

f(t)= 2+6cos(2π10t+300)+ 3cos(2π30t+300-90)+ 4cos(2π35t-180). 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Some Useful Trigonometric integration formulas 

To evaluate the Fourier coefficients a0, an, and bn, we often need to apply the 

following integrals: 

 

 

It is also useful to know the values of the cosine, sine, and exponential functions 

for integral multiples of π 



 

Example 1.2 : Find the Fourier series of the square wave in Fig. 16.5. Plot the 

amplitude and phase spectra. 

 

Example 1.3 : Obtain the Fourier series for the periodic function in Fig. 16.7 and 

plot the amplitude and phase spectra. 

 

 



1.3 SYMMETRY CONSIDERATIONS 

Some Fourier coefficients would be zero and avoid the unnecessary work 

involved in the tedious process of calculating them. Such a method does exist; it 

is based on recognizing the existence of symmetry. Here we discuss three types 

of symmetry: (1) even symmetry, (2) odd symmetry, (3) half-wave symmetry. 

1.3.1 Even Symmetry 

A function f(t) is even if its plot is symmetrical about the vertical axis; 

that is, 

 

 

the Fourier coefficients for an even function become  



 

Since bn = 0, above equation becomes a Fourier cosine series. 

1.3.2 Odd Symmetry 

A function f(t) is said to be odd if its plot is anti-symmetrical about the vertical 

axis:  

 

 

the Fourier coefficients for an odd function become 



 

which give us a Fourier sine series. 

It is interesting to note that any periodic function f(t) with neither even nor odd 

symmetry may be decomposed into even and odd parts. 

 

 

1.3.3 Half-Wave Symmetry 

A function is half-wave (odd) symmetric if 

 

which means that each half-cycle is the mirror image of the next half-cycle. 

 

The Fourier coefficients become 



 

Table below summarizes the effects of these symmetries on the Fourier 

coefficients. 

 

 

 

 

 

 

 

 

 

 

 

 

 



1.4 CIRCUIT and SYSTEM APPLICATIONS 

To find, the steady-state response of a circuit to a non-sinusoidal periodic 

excitation requires the application of a Fourier series, ac phasor analysis, and the 

superposition principle. The procedure usually involves three steps. 

 

The Fourier series is expressed as  

 

Finally, following the principle of superposition, we add all the individual 

responses. 

 

 



 

 

1.5 EXPONENTIAL FOURIER SERIES 

The other representation of Fourier series is the complex exponential form which 

, can be derived from the Euler identity: 

 

This is the complex or exponential Fourier series representation of f(t). 



 

where ω0 = 2π/T , as usual. The plots of the magnitude and phase of cn versus 

nω0 are called the complex amplitude spectrum and complex phase spectrum of 

f(t), respectively. The two spectra form the complex frequency spectrum of f(t). 

 

The coefficients of the three forms of Fourier series (sine-cosine form, amplitude-

phase form, and exponential form) are related by 

 

Example 1.6:  

 

 

1.6 System Applications:  

The Fourier series has many other practical applications, particularly in 

communications and signal processing. Typical applications include spectrum 

analysis, filtering, rectification, and harmonic distortion. We will consider two of 

these: spectrum analyzers and filters. 

1.6.1 Spectrum Analyzers 

A spectrum analyzer is an instrument that displays the amplitude of the 

components of a signal versus frequency. In other words, it shows the various 



frequency components (spectral lines) that indicate the amount of energy at each 

frequency. It is unlike an oscilloscope, which displays the entire signal (all 

components) versus time. An oscilloscope shows the signal in the time domain, 

while the spectrum analyzer shows the signal in the frequency domain. There is 

perhaps no instrument more useful to a circuit analyst than the spectrum analyzer. 

An analyzer can conduct noise and spurious signal analysis, phase checks, 

electromagnetic interference and filter examinations, vibration measurements, 

radar measurements, and more. Spectrum analyzers are commercially available 

in various sizes and shapes. 

The Fourier series provides the spectrum of a signal. As we have seen, the 

spectrum consists of the amplitudes and phases of the harmonics versus 

frequency. By providing the spectrum of a signal f(t), the Fourier series helps us 

identify the pertinent features of the signal. It demonstrates which frequencies are 

playing an important role in the shape of the output and which ones are not. 

A periodic function is said to be band-limited if its amplitude spectrum contains 

only 

a finite number of coefficients An or cn. In this case, the Fourier series becomes 

 

 



1.6.2 Filters 

Filters are an important component of electronics and communications 

systems. In communication, course a full discussion on passive and active filters. 

Here, we investigate how to design filters to select the fundamental component 

(or any desired harmonic) of the input signal and reject other harmonics. This 

filtering process cannot be accomplished without the Fourier series expansion of 

the input signal. For the purpose of illustration, we will consider two cases, a low 

pass filter and a band pass filter.  

The output of a low pass filter depends on the input signal, the transfer function 

H(ω) of the filter, and the corner or half-power frequency ωc. We recall that ωc = 

1/RC for an RC passive filter. As shown in Figure below, the low pass filter passes 

the dc and low-frequency components, while blocking the high-frequency 

components. By making ωc sufficiently large (ωc >> ω0, e.g., making C small), a 

large number of the harmonics can be passed. On the other hand, by making ωc 

sufficiently small (ωc << ω0), we can block out all the ac components and pass 

only dc, series expansion of the square wave.) 

 

 



 

 

If  the input x(t)= ∑ 𝑐𝑥𝑒𝑗2𝜋𝑛𝑡𝑓0∞
𝑛=−∞  and the transfer function H(f), then  

y(t)= ∑ 𝑐𝑥𝑒𝑗2𝜋𝑛𝑡𝑓0∞
𝑛=−∞ , where cy=H(f)cx 

 

 

 

 

1.7 AVERAGE POWER AND RMS VALUES 

 

Given a periodic function f(t), its rms value (or the effective value) is given by 

 



 

 

If f(t) is the current through a resistor R, then the power dissipated in the resistor 

is 

 

One can avoid specifying the nature of the signal by choosing a 1Ohm  resistance. 

The power dissipated by the 1 Ohm resistance is 

 

This result is known as Parseval’s theorem. Notice that a2
0 is the power in the dc 

component, while 1/2(a2
n + b2

n) is the ac power in the nth harmonic. Thus, 

Parseval’s theorem states that the average power in aperiodic signal is the sum of 

the average power in its dc component and the average powers in its harmonics. 

 

Example 1.7: 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1.8 Fourier Transform 

 

Fourier series enable us to represent a periodic function as a sum of sinusoids and 

to obtain the frequency spectrum from the series. The Fourier transform allows 

us to extend the concept of a frequency spectrum to non-periodic functions. The 

transform assumes that a non-periodic function is a periodic function with an 

infinite period. Thus, the Fourier transform is an integral representation of a non-

periodic function that is analogous to a Fourier series representation of a periodic 

function. 

The Fourier transform is an integral transform like the Laplace transform. It 

transforms a function in the time domain into the frequency domain. The Fourier 

transform is very useful in communications systems and digital signal processing, 

in situations where the Laplace transform does not apply. While the Laplace 

transform can only handle circuits with inputs for t> 0 with initial conditions, the 

Fourier transform can handle circuits with inputs for t< 0 as well as those for t> 

0. 

The Fourier transform is given by: 

 

 

 

In general, F(ω)is a complex function; its magnitude is called the amplitude 

spectrum, while its phase is called the phase spectrum. Thus F(ω)is the spectrum. 

The inverse Fourier transform as 



 

The function f(t) and its transform F(ω) form the Fourier transform pairs : 

 

The Fourier transform F(ω)exists when the Fourier integral converges. A 

sufficient but not necessary condition that f(t) has a Fourier transform is that it be 

completely integrable in the sense that  

 

For example, the Fourier transform of the unit ramp function tu(t) does not exist, 

because the function does not satisfy the condition above. 

Table below illustrate some important and useful functions with their Fourier 

transform. 

 

 



 

 

 

1.8.1 PROPERTIE S O F TH E FOURIE R TRANSFORM 

We now develop some properties of the Fourier transform that are useful in 

finding the transforms of complicated functions from the transforms of simple 



functions. For each property, we will first state and derive it, and then illustrate it 

with some examples. 

1- Linearity 

 

 

 

 

2- Time Scaling 



 

 

 

3- Time Shifting 

 

 

 

4- Frequency Shifting (or Amplitude Modulation) 



 

 

5- Time Differentiation 

 

In general  

 

 

6- Time Integration 



 

 

7- Reversal 

 

 

 

8- Duality 



 

 

9- Convolution 

 

 

 



 

 

1.9 PARSEVAL’ S THEOREM 

Parseval’s theorem demonstrates one practical use of the Fourier trans-form. 

It relates the energy carried by a signal to the Fourier transform 

of the signal. If p(t) is the power associated with the signal, the energy 

carried by the signal is 

 

Parseval’s theorem states that this same energy can be calculated in the 

frequency domain as 

 

 



 

We may also calculate the energy in any frequency band ω1 < ω <ω2 As 

 

Example 1.: 

 

 

 



 

 



 

 



 

 

 

 

Inverse Fourier Transform 

 

 

 

 

 

 

 

 



 

 

 

 

 



 

 

 

 


