1- Fourier Series and Fourier Transform:
Fourier Series, trigonometric FS, Compact form, Complex FS, Symmetry, Half

wave Symmetry, Parseval’s theorem, Fourier Transform, Properties, convolution
theorem, power spectral, density and correlations, signals and linear systems,

applications.

Do not worry about your difficulties in mathematics, I assure you that
mine are gﬂ'&‘ﬂf&‘ff
—Albert Einstein

1.1 Introduction:

In this chapter, we consider representing a signal as a weighted
superposition of orthogonal sinusoids, if such a signal is applied to a linear
system, then the system output is a weighted superposition of the system response
to each complex sinusoid.

Representation of signals as superposition of orthogonal sinusoid not only
lead to a useful expression for the system output but also provides a very
insightful characterization of signals and systems. The focus of this chapter is
representation of signals using orthogonal sinusoids and the properties of such
representations. Applications of these representations to system and signal
analysis are emphasized in the communication system theory and circuit analysis.
The Fourier series is named after Jean Baptiste Joseph Fourier (1768-1830). In
1822, Fourier’s genius came up with the insight that any practical periodic
function can be represented as a sum of sinusoids. Such a representation, along
with the superposition theorem, allows us to find the response of circuits to
arbitrary periodic inputs using phasor techniques.

We Dbegin with the trigonometric Fourier series. Later we consider the
exponential Fourier series. We then apply Fourier series in circuit analysis.
Finally, practical applications of Fourier series in spectrum analyzers and filters

are demonstrated.



1.2 TRIGONOMETRIC FOURIER SERIES
According to the Fourier theorem, any practical periodic function of frequency
o can be expressed as an infinite sum of sine or cosine functions that are integral
multiples of wo. Thus, f(t) can be expressed as
f(t) =ag + a, coswyt + by sinwgt + a cos 2ewyt

+ by sin 2wqgt + a3 cos 3wyt + by sin3wgf + - - -

or

.
f(ty= ag + Z{'a,, cos nwot + b, sinnewot)
——

dec :T:l

ac

where wo = 27/T is called the fundamental frequency in radians per second. The
sinusoid sin nwet or cos nwot is called the nth harmonic of f(t); it is an odd
harmonic if n is odd and an even harmonic if n is even. The constants a, and by
are the Fourier coefficients. The coefficient ag is the dc component or the average
value of f(t).

The Fourier series of 2 periodic function f(t) is a representation that resolves
f(t) into a dc component and an ac component comprising an
infinite series of harmonic sinusoids.
A function that can be represented by a Fourier series as in Eq. (16.3) must meet
certain requirements, because the infinite series in Eq. (16.3) may or may not
converge. These conditions on f(t) to yield a convergent Fourier series are as
follows:

1. f(r) is single-valued everywhere.

2. f(r) has a finite number of finite discontinuities in any one
period.

3. f(t) has a finite number of maxima and minima in any one
period.

w+T
4. The integral f | f(t)|dt < oc for any 1.
Iy



These conditions are called Dirichlet conditions. Although they are not necessary
conditions, they are sufficient conditions for a Fourier series to exist.

A major task in Fourier series is the determination of the Fourier coefficients
a0,an, and bn. The process of determining the coefficients is called Fourier

analysis. The following trigonometric integrals are very helpful in Fourier
analysis. For any integers m and n,

T
f smnwgt dr =0
0
.
f cosnwyt dt =0
0

.
f sin nwot cos magt dt = 0
0

T
f SIn nwyt SInmawyt dt = 0, (m == n)
0
[g

T
Cos nawyt cos mawyt dt = 0, (m %= n)

r T

SIN“ newgt dt = —

0 2

T , T

Cos” nwpt dt = —

0 2

By using the above identities we can

| T
apg = T [ﬂ f(t)dt

) T
a, = —f f(t) cosnwyt dt
T Jo



2 T
b, = — [ (1) sinnwyt dt
T J

An alternative form of Eq. (16.3) is the amplitude-phase form

ft) =ao+ Z Ay cos(nawpt + ¢y)
n=l

Where

A, = aﬁ + b2, ¢, = —tan~! bn
Ay
The plot of the amplitude A, of the harmonics versus nwy is called the amplitude
spectrum of f(t); the plot of the phase @, versus nwy is the phase spectrum of f(t).
Both the amplitude and phase spectra form the frequency spectrum of f(t).
The frequency spectrum of a signal consists of the plots of the amplitudes
and phases of the harmonics versus frequency.
Thus, the Fourier analysis is also a mathematical tool for finding the spectrum of
a periodic signal.
One-Sided or Positive-frequency line spectra
Consider the arbitrary sinusoid
f(t) = Acos(wyt + 6) wherewy = 2 xm * f = 21 /T,
Which can be written as:
Acos(wot + 0) = Re[Ae/Wot+9)] = Re[Ae/WoD) e/ ®)
This is called a Phasor representation because the term inside the brackets may
be viewed as a rotating vector in a complex plane whose axes are the real and

Imaginary parts as shown below.



The phasor has length A , rotates counterclockwise ate a rate frequency f,
revolutions per second, and at time =0 makes an angle 6 with respect to the
positive real axis. At any time t the projection of the phasor on the real axis i.e its
real part equals the sinusoid f(t).

Note carefully that only three parameters are needed to specify a phasor:
amplitude, relative phase and rotational frequency. To describe the same phasor
in the frequency domain , we see that it is defined only for particular frequency
fo- With this frequency we must associate the corresponding amplitude and phase.
Hence, a suitable frequency domain description would be the line spectrum of
Figure below, which consists of two plots, amplitude versus frequency and phase
versus frequency. Four standard conventions used in constructing line spectra
listed .

1- In all our spectra drawings the independent variable will be cyclical
frequency f in hertz, rather than radian frequency w.

2- Phase angles will be measured with respect to Cosine waves or
equivalently, with respect to the positive real axis of the phasor diagram.
sin(wt)=cos(wt-90°).

3- We regard amplitude as always being a positive quantity; when negative
appear, they must be absorbed in the phase —Acos(wt)=Acos(wt+180°).

There is another spectra representation which is only slightly more complicated
and turns out to be much more useful. It is based on writing a sinusoid as a sum

of two exponentials,



ACOS(WOt + 9) = gej(wot‘l'e) + ge—j(wot+9)

Which will call the conjugate-phasor representation since the two terms are
complex conjugates of each other.
e The spectrum of periodic signals is not continuous but exist only at discrete
frequencies.
e The idea of negative frequency is not hard to be understand. Both signals
eJWot) - o=iwWol) ggcillate with the same frequency but they may looked
upon two phasor rotating in opposite directions and when added yield a

real time domain function.

Example 1.1: Draw the line spectra for the signal consist of sum of sinusoids,
such as f(t)= 2+6cos(2n10t+30°%)+ 3sin(2n30t+30°)- 4cos(2n35t).

Solution :

f(t)= 2+6c0s(2m10t+30°)+ 3cos(2n30t+30°-90)+ 4cos(2n35t-180).



Some Useful Trigonometric integration formulas
To evaluate the Fourier coefficients ag, a,, and by, we often need to apply the

following integrals:

1 .
fms at dt = — sinat
[

_ |
[smmdr = ——cosat
l

I

1 |
frccss at dt = — cosat + —tsinat
a- {1
l l

fsinatdt = —Esinar — —tcosat
a a

It is also useful to know the values of the cosine, sine, and exponential functions

for integral multiples of ©



Function Value

cos 2n 1
sin2n 0
COS nIT (="
sinnT 0
niT (=12, n =even
CcOos 4
0, n = odd
. nm (=H=D12 5 = odd
sin — 4
2 0, n = even
(_,_jln.-r |
(_,_jr.!.'r (_ l)n
— nf2 — 7
Jin)> (—1)m=, n = even

J(=D#=D2 p = odd

Example 1.2 : Find the Fourier series of the square wave in Fig. 16.5. Plot the

amplitude and phase spectra.
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Example 1.3 : Obtain the Fourier series for the periodic function in Fig. 16.7 and

plot the amplitude and phase spectra.
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1.3 SYMMETRY CONSIDERATIONS

Some Fourier coefficients would be zero and avoid the unnecessary work
involved in the tedious process of calculating them. Such a method does exist; it
Is based on recognizing the existence of symmetry. Here we discuss three types
of symmetry: (1) even symmetry, (2) odd symmetry, (3) half-wave symmetry.
1.3.1 Even Symmetry
A function f(t) is even if its plot is symmetrical about the vertical axis;

that is,

f&) = f(—1)
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the Fourier coefficients for an even function become



2 T/2
?L f(t)de

4 T/2
a, = —f f(t)cosnewgt dt
I Jo

an

b, =10

Since b, = 0, above equation becomes a Fourier cosine series.
1.3.2 Odd Symmetry
A function f(t) is said to be odd if its plot is anti-symmetrical about the vertical

axis:

f(=t)=—f(t)

--..'qr'

h.'“'

the Fourier coefficients for an odd function become



H[]='=:|, H”=0

4 T/2
b, = — [ f(t) sinnwot dt
T Jo

which give us a Fourier sine series.
It is interesting to note that any periodic function f(t) with neither even nor odd

symmetry may be decomposed into even and odd parts.

l 1
f@y =37 O+ fEDI+ S0 = F(ED] = felt) + folt)

L. g

.

even odd

f(t)=ao+ ) ancosnwot + Y bysinnagt = fo(t) + fo(f)
n=|

n=l|

even odd

1.3.3 Half-Wave Symmetry

A function is half-wave (odd) symmetric if

( T\ _
f I—E)——.f(?‘)

which means that each half-cycle is the mirror image of the next half-cycle.
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The Fourier coefficients become



&g:ﬂ

.0,

(4 T2
?f f(t)cosnwot dt, forn odd
0

(4 T2
T f f(t)sinnwgt dt,
1 0

.Oj

for n even

for n odd

for n even

Table below summarizes the effects of these symmetries on the Fourier

coefficients.
Symmetry g Cn by Remarks

Even ag = 0 ay, = 0 b, =0 Integrate over T /2 and multiply
by 2 to get the coefficients.

Odd ap =0 an =0 b, #0 Integrate over T /2 and multiply
by 2 to get the coefficients.

Half-wave a; =20 s, = () bs, =0 Integrate over T /2 and multiply
tapey =0 bayy #0 by 2 to get the coefficients.




1.4 CIRCUIT and SYSTEM APPLICATIONS
To find, the steady-state response of a circuit to a non-sinusoidal periodic
excitation requires the application of a Fourier series, ac phasor analysis, and the

superposition principle. The procedure usually involves three steps.

Steps for Applying Fourier Series:

1. Express the excitation as a Fourier series.

2. Find the response of each term in the Fourier series.

3. Add the individual responses using the superposition principle.
The Fourier series is expressed as

oG
v(t) = Vg + Y _ V, cos(nagt + 6,)
=l
Finally, following the principle of superposition, we add all the individual
responses.

1(t) =iplt) +1,(t) +i2(t)+---

o0
=1Io+ ) [I,| cos(next + )

n=l|

as
i) Vi cos(wyt = ) (&)
—_—
| Linear
Vs cos(2wqt + 6
) . o 2 9 network
W) @) Linear

network

i
V, cosinwyr +8,) @
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1.5 EXPONENTIAL FOURIER SERIES
The other representation of Fourier series is the complex exponential form which

, can be derived from the Euler identity:

o

FOy= ) cpelm

H=—0oC

This is the complex or exponential Fourier series representation of f(t).



-
c, = ! [ f(t)e It g4t
mn T 9 .

where w0 = 2n/T , as usual. The plots of the magnitude and phase of cn versus
nw0 are called the complex amplitude spectrum and complex phase spectrum of

f(t), respectively. The two spectra form the complex frequency spectrum of f(t).

The exponential Fourier series of a periodic function f (t) describes the spectrum
of f(t) in terms of the amplitude and phase angle of ac components at positive
and negative harmonic frequencies.

The coefficients of the three forms of Fourier series (sine-cosine form, amplitude-

phase form, and exponential form) are related by

Ay Eif’n = dy — .f.bn = 2¢,

;az + b‘? _
C."? =|Cﬂlﬂ= ”#ﬂ/_ [Ell"] |bﬂfl’an

Example 1.6:

Find the exponential Fourier series expansion of the periodic function
f(t)=¢€.,0<t <2mwith f(t +27) = f(t).

1.6 System Applications:

The Fourier series has many other practical applications, particularly in
communications and signal processing. Typical applications include spectrum
analysis, filtering, rectification, and harmonic distortion. We will consider two of
these: spectrum analyzers and filters.

1.6.1 Spectrum Analyzers

A spectrum analyzer is an instrument that displays the amplitude of the

components of a signal versus frequency. In other words, it shows the various



frequency components (spectral lines) that indicate the amount of energy at each
frequency. It is unlike an oscilloscope, which displays the entire signal (all
components) versus time. An oscilloscope shows the signal in the time domain,
while the spectrum analyzer shows the signal in the frequency domain. There is
perhaps no instrument more useful to a circuit analyst than the spectrum analyzer.
An analyzer can conduct noise and spurious signal analysis, phase checks,
electromagnetic interference and filter examinations, vibration measurements,
radar measurements, and more. Spectrum analyzers are commercially available
in various sizes and shapes.

The Fourier series provides the spectrum of a signal. As we have seen, the
spectrum consists of the amplitudes and phases of the harmonics versus
frequency. By providing the spectrum of a signal f(t), the Fourier series helps us
identify the pertinent features of the signal. It demonstrates which frequencies are
playing an important role in the shape of the output and which ones are not.

A periodic function is said to be band-limited if its amplitude spectrum contains
only

a finite number of coefficients An or cn. In this case, the Fourier series becomes
N

N
fity= ) cpei =ag+ ) A,cos(nwgt + )

n=—N n=l




1.6.2 Filters

Filters are an important component of electronics and communications
systems. In communication, course a full discussion on passive and active filters.
Here, we investigate how to design filters to select the fundamental component
(or any desired harmonic) of the input signal and reject other harmonics. This
filtering process cannot be accomplished without the Fourier series expansion of
the input signal. For the purpose of illustration, we will consider two cases, a low
pass filter and a band pass filter.
The output of a low pass filter depends on the input signal, the transfer function
H(w) of the filter, and the corner or half-power frequency w.. We recall that o; =
1/RC for an RC passive filter. As shown in Figure below, the low pass filter passes
the dc and low-frequency components, while blocking the high-frequency
components. By making o sufficiently large (o¢ >> wg, €.¢., making C small), a
large number of the harmonics can be passed. On the other hand, by making .
sufficiently small (. << ®o), we can block out all the ac components and pass

only dc, series expansion of the square wave.)
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If the input X(t)= X% _, c,e/2™t/o and the transfer function H(f), then

y(O)= X% _ o c, e/2™o where cy=H(f)cy

1.7 AVERAGE POWER AND RMS VALUES

| &
P = Vi ls + E Z Vol cos(8, — ¢y)

n=|

Given a periodic function f(t), its rms value (or the effective value) is given by

[1 /T
Fl'm5=VIIF£ .fz(f}df



n=l

P 1 = 3 *
Frms = Jﬂﬁ + E Z(a": ‘|_hj?}

If f(t) is the current through a resistor R, then the power dissipated in the resistor
IS

P = RF?

rms

One can avoid specifying the nature of the signal by choosing a 10hm resistance.

The power dissipated by the 1 Ohm resistance is

o0

N . P
Plo=Fo.=a+5) (@+b)= ) lof

n=l H=—oC

This result is known as Parseval’s theorem. Notice that a% is the power in the dc
component, while 1/2(a%, + b?,) is the ac power in the n'" harmonic. Thus,
Parseval’s theorem states that the average power in aperiodic signal is the sum of

the average power in its dc component and the average powers in its harmonics.

Example 1.7:






1.8 Fourier Transform

No human investigation can claim to be scientific if it doesn 't pass the
test of mathematical proof.

—Leonardo da Vinci
Fourier series enable us to represent a periodic function as a sum of sinusoids and
to obtain the frequency spectrum from the series. The Fourier transform allows
us to extend the concept of a frequency spectrum to non-periodic functions. The
transform assumes that a non-periodic function is a periodic function with an
infinite period. Thus, the Fourier transform is an integral representation of a non-
periodic function that is analogous to a Fourier series representation of a periodic
function.
The Fourier transform is an integral transform like the Laplace transform. It
transforms a function in the time domain into the frequency domain. The Fourier
transform is very useful in communications systems and digital signal processing,
in situations where the Laplace transform does not apply. While the Laplace
transform can only handle circuits with inputs for t> 0 with initial conditions, the
Fourier transform can handle circuits with inputs for t< 0 as well as those for t>
0.

The Fourier transform is given by:

Flw)=F[f()] = f f)e " di

where F is the Fourier transform operator.
The Fourier transform is an integral transformation of f (t) from the
time domain to the frequency domain.
In general, F(w)is a complex function; its magnitude is called the amplitude
spectrum, while its phase is called the phase spectrum. Thus F(w)is the spectrum.

The inverse Fourier transform as



ft)=F '[Flw] = s [ F(w)e'* dw
2w J_

The function f{(t) and its transform F(w) form the Fourier transform pairs :

f(t) — F(w)

The Fourier transform F(w)exists when the Fourier integral converges. A
sufficient but not necessary condition that f(t) has a Fourier transform is that it be

completely integrable in the sense that

fx f(t)|dt <oc

-
For example, the Fourier transform of the unit ramp function tu(t) does not exist,
because the function does not satisfy the condition above.
Table below illustrate some important and useful functions with their Fourier

transform.
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1.8.1 PROPERTIE SO F TH E FOURIE R TRANSFORM
We now develop some properties of the Fourier transform that are useful in

finding the transforms of complicated functions from the transforms of simple



functions. For each property, we will first state and derive it, and then illustrate it
with some examples.
1- Linearity

If Fi(w) and F>(w) are the Fourier transforms of f(r) and f>(t), respec-
tively, then

Fla, fi(t) + ax fo(1)] = a| Fi(w) + ay F>(w) (17.12)

where a; and a, are constants. This property simply states that the Fourier
transform of a linear combination of functions 1s the same as the linear
combination of the transforms of the individual functions. The proof of
the linearity property in Eq. (17.12) 1s straightforward. By definition,

F[al.fl (1) +axfa(t)] = f [a) fi(t) ‘|—Hglfg(2‘)]€_"r‘mr dt

=f a|.f|(r}€"j“”dr+f a fr(t)e™ I dt

a0 —aC

=a Fi(w) + a2 F>(w)

(17.13)
For example, sinwgt = ELJ-(E“"“”“! — e~J@o!) Using the linearity
property,
. 1 , .
F[sinwyt] = ?[F(EJMDI) — F(e—it)]
! (17.14)

=§B@—mﬂ—ﬂw+%ﬂ

2- Time Scaling



If F(w) = F[f(1)], then

Flf@n] = —F (f) (17.15)

lal  \a

where a 1s a constant. Equation (17.15) shows that time expansion
(la] = 1) corresponds to frequency compression, or conversely, time
compression (|a| < 1) implies frequency expansion. The proof of the
time-scaling property proceeds as follows.

For example, for the rectangular pulse p(r) in Example 17.2,

Flp(t)] = At sinc %T (17.18a)
Using Eq. (17.15),
Flp@n) = 2% sine 2 17,185
[p(28)] = > sinc y (17.18b)
3- Time Shifting
If F(w)= F[f(t)], then
Flft—t))] = e /“"F(w) (17.20)

that 1s, a delay in the time domain corresponds to a phase shift in the
frequency domain. To derive the time shifting property, we note that

For example, from Example 17.3,

Fle % u(r)] = P

The transform of F(f) = e~ " Pu(r — 2) is
, E—jzr_u
Flw)=Fle " Put —2)] =

| 4+ jew
4- Frequency Shifting (or Amplitude Modulation)



This property states that if F(w) = F[f(t)], then

FLf()e!" = F(w — ) (17.25)

meaning, a frequency shift in the frequency domain adds a phase shift to
the time function. By definition,

For example, coswot = 3(e/“" + ¢=/“o"). Using the property in
Eq. (17.25),

1 . I |
FLf (@) coswpt] = 5F [f(t)el" ] + >F [f(t)e o]

| : (17.27)
= EF(w—wu) + EF(erwu)
5- Time Differentiation
Given that F(w) = F[f(r)], then
FILf(1)] = joF (w) (17.28)

In other words, the transform of the derivative of f(f) is obtained by
multiplying the transform of f(¢) by jw. By definition,

In general

I FIf™ 1] = (jo)"F(w) ‘

For example, if f(r) = e~ then
fl(t) = —ae™" = —af (1) (17.32)

Taking the Fourier transforms of the first and last terms, we obtain

joF@=-aF@) = F)=

17.33
a—+ jw ( )

which agrees with the result in Example 17.3.

6- Time Integration



Given that F(w) = F[f ()], then

F [[ fif)df} = M + 1 F(0)d(w) (17.34)

J

that is, the transform of the integral of f(#) is obtained by dividing the
transform of f(z) by jw and adding the result to the impulse term that
reflects the dc component F(0). Someone might ask, “How do we know
that when we take the Fourier transform for time integration, we should
integrate over the interval [—oc, t] and not [—o0, oc]?” When we inte-
grate over [—oc, oc], the result does not depend on time anymore, and
the Fourier transform of a constant is what we will eventually get. But
when we integrate over [—oc, t], we get the integral of the function from
the past to time ¢, so that the result depends on ¢ and we can take the
Fourier transform of that.

For example, we know that F[§(r)] = | and that integrating the
impulse function gives the unit step function [see Eq. (7.39a)]. By ap-
plying the property in Eq. (17.34), we obtain the Fourier transform of the
unit step function as

Flu(t)]=F [f S(I)df] = L + T8 (w) (17.36)
_ Jw

2o

7- Reversal

If F(w) = F[f(t)], then

FLF(=)] = F(—w) = F*(®) ‘ (1737

where the asterisk denotes the complex conjugate. This property states
thatreversing f(¢) about the time axis reverses F (w) about the frequency
axis. This may be regarded as a special case of time scaling for which
a =—11mnEq.(17.15).

8- Duality



This property states that if F(w) 1s the Fourier transform of f(t), then
the Fourier transform of F(r) 1s 27 f (—w); we write

FLf(t)] = F(w) = FIF(t)] =2nf(—w) (17.38)

This expresses the symmetry property of the Fourier transform. To derive

For example, if f(f) = e/, then

F(w) = (17.41)

w? + 1
By the duality property, the Fourier transform of F(¢) = 2/(t* + 1) is

2 f(w) =2me™ ™ (17.42)

9- Convolution

If X(w), H(w), and Y (w) are the Fourier transforms of x(¢), h(t), and
y(r), respectively, then

Y(w)=F[h(t) xx(t)] = H(w) X (w) (17.44)

which indicates that convolution in the time domain corresponds with
multiplication in the frequency domain.

Property f(t) Flw)

Linearity ay fi(t) +ax fo(t)  a Fi(w) + ax Fr(w)
) | Y

Scaling fat) Ef (E)

Time shift flt —a)u(t —a) e F(w)

Frequency shift e/ f(z) Flw—ay)

Modulation cos(wot) f(t) %[F(m + o) + Flw — )]



Property ft) Flw)
o - df
Time differentiation o JF(w)
EUT
: d;{ (jo)" F(@)
r P—
Time integration [ ft)dt ﬂ + 7 F(0)d(w)
—ne Jw
Frequency differentiation " f(t) (j)”d Fiew)
w.ﬂ
Reversal f(=t) F(—w) or F(w)
Duality F(t) 27 f(—w)
Convolution in ¢ fi(t) = fi(t)  Fi(w)Fs(w)
1
Convolution in w fi(e) fi(t) — Fl(w) * F(w)

2

1.9 PARSEVAL’ S THEOREM

Parseval’s theorem demonstrates one practical use of the Fourier trans-form.
It relates the energy carried by a signal to the Fourier transform

of the signal. If p(t) is the power associated with the signal, the energy

carried by the signal is

W:f p(t)dt

oo
Parseval’s theorem states that this same energy can be calculated in the

frequency domain as
oo l oo
Wi =f () di = —f |F (@) do
_~ 2 J_ o

Parseval’s theorem states that the total energy delivered to a I-(0 resistor equals
the total area under the square of f(t) or /27 times the total area under the
square of the magnitude of the Fourier transform of {t).



Parseval’s theorem relates energy associated with a signal to its Fourier
transform. It provides the physical significance of F(w), namely, that
| F(w)|* is a measure of the energy density (in joules per hertz) corre-
sponding to f(r).

We may also calculate the energy in any frequency band m; < @ <w, AS

1 e
Wiq = —f F(o)]? do

Example 1.:
J Determine the Fourier transform of the function in Fig. 17.16.
/\ 2 /\ Answer: (8cos3w — 4cosdw — 4cos2w)/w’.
—4 2 0 2 P

FigUl’E [7.16  For Practice Prob. 17.5.

Determine the Fourier transforms of these functions: (a) gate function
g(t) = u(t) —u(t — 1), (b) f(t) = te=?'u(t), and (c) sawtooth pulse
f(t) = 10t[u(t) —u(t — 2)].
. 1
Answer: (a) (Il —e /%) [:rr&(w} — .—], (b)
Jw
10(e—/2* — 1) . 205 o-i2e

3
() ()

1
2+ jw)*

(c)

17.2  What is the Fourier transform of the triangular pulse
in Fig. 17.27?

JUr) A
1 +




17.6  Obtain the Fourier transforms of the signals shown
in Fig. 17.31.

x(r) 4

-~
.
e

Y
Y

(a) (b

17.8 Determine the Fourier transforms of these functions:
(@) f(t) = e [u(t) —u(t —1)]
(b) g(t) = te"u(r)
(c) hit) =u(t + 1) — 2u(t) + u(t — 1)
17.9  Find the Fourier transforms of these functions:
(a) f(t) =e " cos(3t + m)ult)
(b) g(t) =sinmt[u(t + 1) —u(t — 1)]
(c) h(t) = e ¥ cosmtu(t — 1)
(d) p(t) = e sindtu(—1)
(e) g(t) =4 sgn(t —2)+ 38(t) — 2u(r — 2)



17.14 Find the Fourier transform of
f(t) = cos2mt[u(t) — u(t — 1)].

17.15 (a) Show that a periodic signal with exponential
Fourier series

- ]

fiO)y= ) cie™

H==—02C

has the Fourier transform

e

F(w) = Z C,0(w — rnewy)

H=—0C

where wy = 27/ T.
(b) Find the Fourier transform of the signal in Fig.
17.33.

S A

1

:
0 T 20 3w 4w  Sw ¢

17.16 Prove that if F(w) is the Fourier transform of f(r).

FLF() sinwot] = %[F(w + wo) — F(w — wo)]

17.17 If the Fourier transform of f(t) is

10
T2+ jo) G+ jw)
determine the transforms of the following:

@ f(=31) (b) FQr—1) (c) f(t)cos2e
d r
@ S0 @ ] F£(t) dt

F(w)




17.18 Given that F[f(t)] = (j/w)(e~/® — 1), find the

17.26

17.54

17.53

Fourier transforms of:

(@) x(t) = f(£) +3 (b) y(t) = flr—2)
(c) h(t) = f'(1)

(d) g(r) =4f(3) +10f(31)

A linear system has a transfer function

10

H{wj:2+jw

Determine the output v,(¢) at r = 2 s if the input
v; (1) equals:

(a) 48(1) V. (b) 6e~'u(t) V. (c) 3cos2t V

A signal with Fourier transform

20
4+ jow
is passed through a filter whose cutoff frequency is 2

rad/s (1.e., 0 < w < 2). What fraction of the energy
in the input signal is contained in the output signal?

Flw) =

The voltage signal at the input of a filter is

v(t) = 50e~2" V. What percentage of the total 1-Q
energy content lies in the frequency range of

| < w < 5rad/s?

Inverse Fourier Transform



Obtain the inverse Fourier transform of:

: 2
10jew + 4 (b]G(w}:w + 21

@) = T+ 6jwts @ +9

Solution:

(a) To avoid complex algebra, we can replace jw with s for the moment.
Using partial fraction expansion,

10s + 4 10s + 4 A B

S = e 8~ 61612 544 512
where
A= G4+HFe)| = 23 0
= G x2) |, -2
B=(s+2F(s)| = 2t%  _Z10_ 4
=2 Gray|_, 2

Substituting A = 18 and B = —8 in F(s) and s with jw gives
L8
jw+4  jw+2

F(jw) =

f(©) = (187 — 8™ u(r)
(b) We simplify G(w) as

w? + 21 12

G = = |
(@) w?+9 +m2—|—9

g(t) =5(t) + 27

Find the inverse Fourier transform of:
(@) Hiw) = —— > T2
(1+jw)d+ jw)2 + jw)
2(1 4+ jw)
jo (1+jw)*+16
Answer: (a) h(t) = (2e™" + 3¢ — 5e " )u (1),
(b) v(t) = (1 + 2e " cos4t)u(t).

(b) Y(w) = mé(w) +




*17.22 Determine the inverse Fourier transforms of:
(a) F(w) =48(w+ 3) + 6(w) + 48(w — 3)
(b) Glw) = du(ew + 2) — dul(w — 2)
(c) H(w) = 6cos2w

*17.23 Determine the functions corresponding to the

following Fourier transforms:

g J e

__° ) — Dl
(a) Fi(w)= ot (b) Fr(w) = 2e
Fi(e) = — 8 Fu(w) = )
(c) Fi(w) = m (d) Filw) = [+ 20

*17.24 Find f(¢) if:
(a) F(w) =2sinmw[u(w+ 1) —u(w—1)]
(b) F(w) = l(s.in 2w —sinw) + ir(a::::ns 2w —cosw)
ek ({3

17.25 Determine the signal f(¢) whose Fourier transform
is shown in Fig. 17.34.
(Hint: Use the duality property.)

Flw) A
20

10

~



